

Principles for Evaluating Effectiveness of Capping versus Dredging Remedies for Contaminated Sediment

Dr. Michael R. Palermo
USACE Waterways Experiment Station

Presented at

EPA Forum on Managing Contaminated Sediments at Hazardous Waste Sites

May 30-June 1, 2001 - Hilton Old Town Alexandria

Sediment Remediation Alternatives

"A Fourth Environmental Medium"

- No Action
- Monitored Natural Recovery
- In-Situ Capping
- In-Situ Treatment
- Dredging with Containment
 - CDFs, CADs, or Licensed Landfills
- Dredging with Treatment and Disposal

NCP Screening Criteria

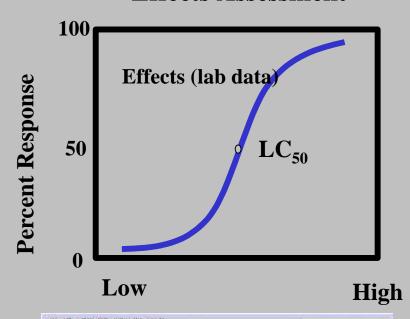
- Threshold Criteria
 - Overall Protection of HH and Environment
 - Compliance with ARARs
- Balancing Criteria
 - Implementability
 - Short Term Effectiveness
 - Long Term Effectiveness and Permanence
 - Reduction in Toxicity Mobility and Volume through Treatment
 - Cost
- Modifying Criteria
 - State Acceptance
 - Community Acceptance

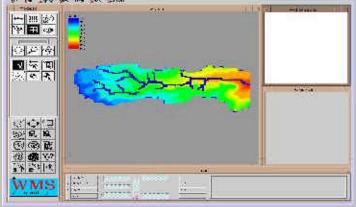
Effectiveness – First things that come to mind

- Capping
 - Will it work?
 - Will it stay in place?
- Dredging
 - Can I get it all out?
 - Will I resuspend too much?

• GOOD QUESTIONS, BUT THERE'S MORE TO IT.

10 Principles for Effective Sediment Remedies


- All decisions should be risk-based
- Control sources
- Set realistic RAOs, RGs, and CULs
- Compare effectiveness of options on an equal footing
- Evaluate Spatial and Temporal aspects of exposure
- Tailor operations to achieve Short Term Effectiveness
- Design for Long Term Effectiveness and Permanence
- Develop site-specific, project-specific, and sediment specific remedies
- Optimize effectiveness by combining options
- Monitor to document effectiveness



All decisions should be risk-based

- Risk reduction is the overall objective
- Baseline risk assessment
- Incremental risk reduction
- Present risk and Future risk
- Comparative risk assessments for remedies

Effects Assessment

Control sources

- Sources should be fully characterized
- Source controls should be considered the first component of the remedy
- Source control component should be in place prior to other components

Set realistic RAOs, RGs, and CULs

- Remedial Action Objectives (RAOs)
 - Specific to receptors
 - Example RAO Reduce cancer risk for fishers
- Remediation Goals (RGs)
 - Tied to receptors and pathways
 - Example RG tissue level in benthic biota
- Cleanup levels (CULs)
 - Consider NCP Criteria
 - Example CUL sediment concentration in biologically active zone

Compare effectiveness of options on an equal footing

- A definite challenge
- All components of the remedy must be considered
- Evaluate effectiveness and permanence over comparable time periods
- Comparative Risk Assessment for Remedy **Options**

Evaluate Spatial and Temporal aspects of exposure

- Most sites have aerial and vertical COC gradients
- Consider background and proximate area
- Surficial sediment layers present on-going risk
- Risk is proportional to area of surficial contamination
- Deeper buried sediments present potential future risk
- Not all contamination can or should be remediated
- Contamination gradients change over time
- Risk is proportional to the time of exposure
- Dredging or capping "restarts the clock"

Tailor operations to achieve Short Term Effectiveness

- Capping
 - Resuspension
 - Mixing
 - Consolidation
- Dredging/ Treatment/ Disposal
 - Resuspension
 - Residual
 - Disposal Releases/ emissions
- Accept short term sacrifices for long term gains
- Place in context with other on-going processes

Design for Long Term Effectiveness and Permanence

Capping

- Design to maintain CULs
- Erosion
- Seismic stability
- Groundwater flow
- Long term diffusion

Dredging and Disposal

- Target for mass removal or to achieve CULs
- Disposal site releases and emissions
- Permanence of controls

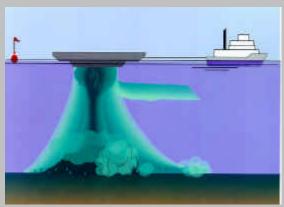
Design for episodic events appropriately

Develop site-specific, projectspecific, and sediment specific remedies

- Project Specific
 - regulatory framework, volume, area, thickness, etc.
- Site Specific
 - water depth, hydrodynamics, climate, infrastructure, proximate resources
- Sediment Specific
 - presence of debris, physical properties, COCs

Optimize effectiveness by combining options

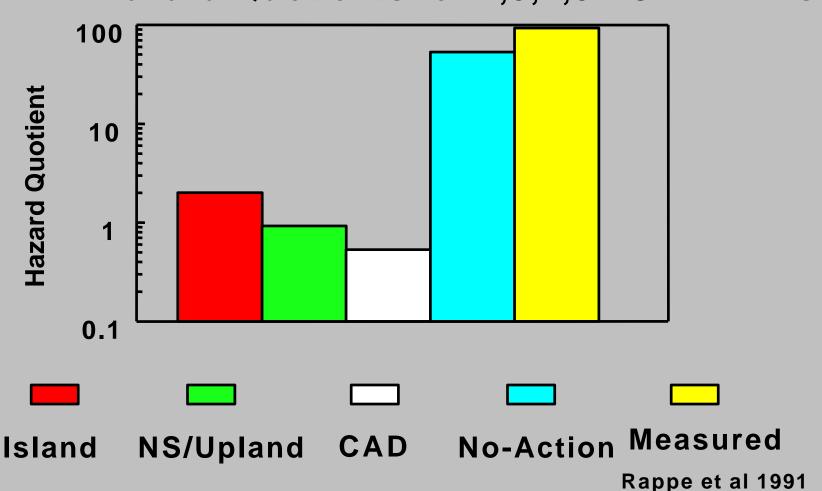
- Combinations often most acceptable to all parties
- Combinations provide a balance of effectiveness and costs
- Combinations help offset disadvantages of respective single options
- Examples
 - Monitored Natural Recovery (MNR) for larger adjacent areas
 - Dredging hotspots combined with capping adjacent areas
 - Dredging followed by thin capping of residuals


Monitor to document success

- Historically, few sediment remedies have been adequately monitored
- Capping
 - Fewer capping remedies selected
 - Long time periods required to confirm effectiveness
- Dredging
 - On the order of 30 well documented projects
 - Effectiveness of the removal easy to document
 - Long time periods required to confirm disposal site effectiveness
- Deliberate effort is needed to build a base of field experiences

Tools for Evaluating Effectiveness

- Effects-based testing
- Models
- Effects Databases
- Design Guidance
- Comparative Risk Assessments
- Field Monitoring



Case Study: NY/NJ Harbor

Hazard Quotients for 2,3,7,8-TCDD in Fish

10 Principles for Effective Sediment Remedies

- All decisions should be risk-based
- Control sources
- Set realistic RAOs, RGs, and CULs
- Compare effectiveness of options on an equal footing
- Evaluate Spatial and Temporal aspects of exposure
- Tailor operations to achieve Short Term Effectiveness
- Design for Long Term Effectiveness and Permanence
- Develop site-specific, project-specific, and sediment specific remedies
- Optimize effectiveness by combining options
- Monitor to document effectiveness

ERDC/ WES Center for Contaminated Sediments

http://www.wes.army.mil/el/dots/ccs/index.html

Email:

palermm@wes.army.mil